Перейти к основному содержанию
Реклама
Прямой эфир
Мир
СМИ узнали о требовании США к компаниям Франции отказаться от политики инклюзивности
Общество
Семь человек задержали по делу вирусной программы Mamont
Мир
Замминистра обороны РФ Фомин обсудил военное сотрудничество с руководством Мьянмы
Мир
СМИ указали на необходимость ЕС отказаться от плана по вводу войск на Украину
Мир
Число погибших в результате землетрясения в Мьянме превысило 1 тыс. человек
Мир
Президент Бразилии подтвердил планы приехать на празднование Дня Победы в Москве
Мир
Глава Пентагона подвергся критике за присутствие жены на секретных встречах
Армия
ВС России освободили Пантелеймоновку в ДНР и Щербаки в Запорожской области
Мир
Две россиянки находятся в больнице после крушения батискафа в Египте
Мир
Премьер Саксонии выразил надежду на восстановление ФРГ сотрудничества с Россией
Мир
Землетрясение магнитудой 5,1 зафиксировано рядом со столицей Мьянмы
Мир
WSJ назвала геополитическую неактуальность причиной нелюбви Трампа к Европе
Мир
Блок «Победа» сообщил о намерении стороны защиты оспорить продление ареста Гуцул
Мир
В Дании заявили о планах закупить сотни морских мин для усиления обороноспособности
Армия
ВС РФ освободили Малые Щербаки в Запорожской области и Мирное в ДНР
Мир
Экс-посол Украины заявил о проигрыше Киева и Вашингтона на переговорах в Эр-Рияде
Общество
ВСУ потеряли за сутки более 190 военных в Курской области
Главный слайд
Начало статьи
Озвучить текст
Выделить главное
Вкл
Выкл

В России разработан первый химический реактор для непрерывного изготовления компонентов биоразлагаемого пластика. Его внедрение позволит в пять раз ускорить их создание. Это даст возможность увеличить объемы производства экологичной посуды и упаковки, способной быстро разлагаться в природной среде. Разработка также нужна для медицинской сферы — она поможет снизить стоимость имплантатов из биосовместимых материалов. Промышленный образец установки планируется создать в 2022 году.

В одну стадию

Создание современных полимеров позволяет создавать упаковку и посуду, способную в течение года разлагаться под действием бактерий. Также это помогает производить высококачественные медицинские изделия, которые полностью совместимы с организмом человека. Такие пластики можно получить путем химической обработки более простых соединений — мономеров. Однако этот технологический процесс до сих пор остается слишком долгим и затратным, что не позволяет снизить себестоимость экологичной продукции и запустить ее масштабное производство. Исправить ситуацию может изобретение томских ученых, которым удалось значительно упростить технологию, создав первый химический реактор для непрерывного производства мономеров.

В качестве сырья для производства таких компонентов в устройстве используется молочная кислота, которая предварительно нагревается в специальном теплообменнике и смешивается с азотом, выступающим в качестве защитного газа-протектора. Далее эта парогазовая смесь попадает в камеру реактора, в которой создается искусственный вакуум и поддерживается температура около 200°C. В данных условиях кислоту пропускают через гетерогенный катализатор, представленный в виде мелкодисперсного порошка, находящегося во взвешенном состоянии.

Результат этого процесса — превращение исходного сырья в мономеры лактид или гликолид (вещества, которые образуются при химической обработке молочной и гликолевой кислот и могут использоваться для дальнейшего производства полимеров). Эти мономеры в дальнейшем могут служить основой для создания готовых биоразлагаемых пластиков.

одноразовая пластиковая посуда

Пластиковая посуда

Фото: Global Look Press/ Frank May

— Обычно для синтеза мономеров используется многоэтапная технология, при которой из раствора молочной кислоты вначале создается промежуточный продукт — преполимер, который в дальнейшем разлагается на компоненты, содержащие искомые вещества, — рассказал младший научный сотрудник исследовательской школы химических и биомедицинских технологий Томского политехнического университета Алексей Зиновьев. — У нас же получилось сделать одностадийную технологию увеличенной производительности, которая позволяет создавать мономеры в пять раз быстрее, чем при использовании других методов.

Другой важной особенностью предлагаемого процесса изготовления мономеров ученые считают его непрерывность.

— В отличие от оборудования для многостадийных способов производства новый реактор не требует остановок для загрузки и выгрузки компонентов, — подчеркнул Алексей Зиновьев. — Исходное сырье проходит через него непрерывным потоком, и остановка реактора требуется только для замены катализатора. Она будет необходима не чаще одного раза в неделю при условии непрерывной работы установки.

Кроме того, многостадийная технология отличается от нового способа производства необходимостью в больших энергозатратах, поскольку в периодическом процессе требуется более длительный нагрев.

Экопереход

Ожидается, что преимущества разработки смогут заинтересовать в ее внедрении промышленные компании, которые начнут переходить на производство экологичного пластика.

— На эту тему уже ведутся активные переговоры с представителями крупного нефтехимического холдинга, — отметил доцент исследовательской школы химических и биомедицинских технологий Томского политехнического университета Виктор Новиков.

Также внедрение новой технологии будет особенно интересно в связи с возможным в перспективе запретом на использование одноразовой пластиковой посуды и упаковки, который способен простимулировать увеличение объемов изготовления новых полимеров.

В случае необходимости российские предприятия можно относительно легко переориентировать на выпуск биоразлагаемой продукции — для этого потребуется провести лишь локальные изменения (например, закупку новых пресс-форм) при сохранении производственного оборудования, — пояснил Виктор Новиков.

В НИТУ «МИСиС» подтвердили актуальность новой разработки для медицинской сферы.

имплант зубы стоматолог
Фото: Depositphotos

Рынок биорезорбируемых (совместимых с организмом человека. — «Известия») материалов для создания имплантатов входит в стадию активного развития, однако в России до сих пор не существует их масштабного производства, которое могло бы покрыть все потребности индустрии, — пояснил научный сотрудник НИТУ «МИСиС» Федор Сенатов. — Предложенная одностадийная технология потенциально способна решить проблему.

По словам эксперта, в России сейчас ведется множество исследований, связанных с разработкой имплантатов для челюстно-лицевой хирургии (в том числе их создают с помощью 3D-печати), а вырабатываемый из мономеров полилактид как раз относится к печатаемым медицинским пластикам, которые необходимы для их производства.

В настоящее время в Томске уже создан лабораторный прототип устройства с загрузкой 15 г/ч, испытания которого планируется завершить в сентябре этого года. В дальнейшем разработчики собираются начать масштабирование технологии, доведя возможности оборудования до промышленных объемов в сотни тонн мономеров в год — ожидается, что это произойдет в 2022 году.

Читайте также
Прямой эфир